Работа в системе LaTeX


Простейшие случаи - часть 2


p>У команды \binom есть также аналоги \dbinom и \tbinom, относящиеся к ней так же, как \dfrac и \tfrac относятся к \frac.

В пакете amsmath предусмотрена также конструкция " обобщенной дроби", предназначенная для создания команд, аналогичных \frac и \binom. По определению, обобщенная дробь — это фрагмент формулы, устроенный так: левый ограничитель, затем дробь (толщина дробной черты может быть произвольной, в том числе нулевой), затем правый ограничитель. Напомним, что ограничители — это скобки и им подобные символы, способные автоматически менять размер; в обобщенной дроби ограничители могут и отсутствовать (так что обычная дробь — действительно частный случай обобщенной). Для набора обобщенной дроби предусмотрена команда \genfrac с шестью аргументами. Чтобы понять, как она работает, посмотрим на пример:

Формула $\genfrac{(}{]}{1pt}{0}{x}{y-z}$ лишена всякого смысла.
Формула $\genfrac{(}{]}{1pt}{0}{x}{y-z}$ лишена всякого смысла.

Первый и второй аргументы команды \genfrac — это левый и правый ограничители соответственно; третий аргумент — толщина дробной черты (если толщина нулевая, то дробная черта не печатается); четвертый аргумент содержит указания по поводу размера шрифта для числителя и знаменателя: если оставить его пустым, написав просто "{}" вместо "{0}", то TeX выберет размер самостоятельно; цифра 0 означает, что размер символов будет таким же, как при пользовании командой \dfrac , цифра 1 — размер, как при пользовании командой \tfrac (он же textstyle), цифры 2 и 3 задают еще более мелкие размеры; наконец, пятый и шестой аргументы — это собственно числитель и знаменатель.

Если оставить третий аргумент пустым, написав просто "{}" вместо фигурных скобок, в которых записана толщина, то будет выбрана толщина дробной черты по умолчанию (она равна 0.4 пункта). Если оставить первый и второй аргумент пустыми, то ограничителей не будет (если, однако, левый ограничитель указан, то должен быть указан и правый). Например, "\dfrac{x}{y}" - это то же самое, что

\genfrac{}{}{}{0}{x}{y}

В частности, наш пример с символом Кристоффеля можно записать как

\genfrac{\{}{\}}{0pt}{}{ij}{k}




- Начало -  - Назад -  - Вперед -